
2025/10/25 17:56 1/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

SLURM usage guide

If you are completely new to scientific computing, read this:

Please keep in mind that simply throwing a serial program without
provisions for parallelization at the cluster will not make it run faster. In
fact, it will often run SLOWER, since cpu cores on machines specialized
in scientific computing usually run at lower clock frequencies than
workstation cpus.

There are many commercial and open source software packages that
are already very well parallelized, but you'll definitely need to
know how to use the parallel capabilities of your software or
programming language. Requesting lots of nodes, cpu cores,
memory and time for a program that will use only one single cpu will
only keep you and all other users waiting.

So start small and simple. There's no use waiting for a 10-node-job
just to find out it immeadiately crashes, so test with a 1-node-1-task-
job that requests only 10 minutes first, then moderately make it bigger
and check that e.g. your parallel program delivers reasonable results.
When you are sure you understand what you do and when your test
case works reliably, when you see a decrease in run time when you
add ressources — then go for it.

Why use a cluster at all?

The reason you want to use the cluster is probably the computing resources it provides. With about
several hundred people using the compute cluster for their research every year, there has to be an
instance organizing and allocating these resources. This instance is called the batch system
(“scheduler”, “resource manager”, in the LUH-cluster: “SLURM”). The batch system sorts the
ressource requests (“batch jobs”) it gets from the users according to ressource availability and
priority rules. When the priority of a job is sufficiently high to start, it gets scheduled on the requested
ressources (usually some compute node(s)) and starts. Requests to the batch system are usually
made by submitting a text file containing (bash-) instructions about what to do (the “batch job”), or
by requesting an “interactive” batch job from the command line that puts you directly into a
command shell on a compute node (or a set of compute nodes) to work with, or, as a third option, by
the Open OnDemand portal (“OOD”) that is available on https://login.cluster.uni-hannover.de which
translates the settings you enter via the web browser gui into a text file to again submit as a batch
job to the batch system.

https://login.cluster.uni-hannover.de

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

Parallelization Basics

Batch jobs can roughly be divided into several categories:

serial (also: single-threaded, single-task) batch jobs; they run just like normal programs/scripts.
Usually, no changes/adaptions are needed. The time needed to complete such a job almost
entirely depends on the speed of a single cpu core, and no scaling is achieved. As mentioned
above, starting a serial program on a larger machine will NOT make it run faster, and since the
compute servers in the cluster usually combine lots of cpu cores on each cpu socket, they
actually may run even slower than cores on a smaller workstation that has fewer cores, due to
the total heat generated by each chip that needs to be dissipated. So think about the size and
characteristics of your workload. In the “real world”, smaller loads over short distances are
better transported using a fast car, while large ones that travel around the world need a big
container ship. Similar considerations are valid for workloads on computers, in particular, if the
software is not parallelized.
parallel jobs; these in turn can be distinguished by the kind of problems they treat and how they
attempt to achieve scaling (“reaching results quicker”). Problem are either “trivially parallel
computations” or not:

trivially parallel problems can be solved by simply starting as many tasks as needed / as
possible, and each task will run happily minding its own business, until it achieves a
partial result in the end, which is then combined with all the other results of the other
tasks to get the result of the whole job. Luckily, many problems can be computed in this
way.
non-trivial problems are those that usually need to exchange data during computation, for
example when finishing a simulation time step to update the (so-called) “ghost”-borders
of all the simulation subdomains the complete simulation region has been decomposed
into.

The other main distinction of parallel jobs is how they do it. The two main variants here are:
OpenMP jobs (shared-memory-processing, SMP, single-node, multi-threaded, multi-
processing, can typically scale to the larges compute nodes available) usually run on ONE
node only, using multiple threads or processes, but sharing memory. So the software
needs some logic that specifies which parts of the program (e.g. loops) should run in
parallel, but synchronization between threads is automatic. These programs typically are
linked to an OpenMP library during compilation, so the node itself usually needs to have
some libraries installed, but parallelization is relatively easy and low-effort. The software
must ensure that only one process updates a specific memory location at the same time,
but it can rely on having the same memory contents. Beware, though, that while many
application programs are parallelized this way, and nowadays compute nodes may
contain many cpu cores, scaling still may be quite limited depending on the specific kind
of problem and how much effort has been spent to parallelize the regions of the software
that should do parallel computations. So, while some software packages achieve very
good scaling up to over 100 cpu cores on big servers, others already hit their limits when
using more than 4 or 8 cpus. There's many hardware-factors limiting performance, too,
like the number of cache levels, CPU cache sizes, memory bandwidth, NUMA architecture
etc, and of course I/O.
MPI (message-passing-interface, possible multi-node, multi-processing, can scale up to
millions of cpus); software parallelized using MPI is usually able to achieve the highest
scaling, but the cost is that the software must explicitly specify which parts of the
program run in parallel and how data / results are updated, which task does what, and

2025/10/25 17:56 3/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

how the simulation is kept in sync. So the scaling here also depends on the genius of the
person writing the software and their knowledge about specific hardware features. Each
MPI-task (called a “rank”) is highly independent of the others, and it needs to explicitly
communicate its results to the other tasks whenever there's a need for that, since each
task uses their own memory that only they can access.

Hint: to avoid an easy understanding of complicated things, someone thought it would be a good idea
to name one of the several MPI libraries available “OpenMPI”. Do not fall for this trap. OpenMPI is one
specific implementation of the MPI programming interface (there are many others called IntelMPI,
MVAPICH, IBMMPI, …) that uses message-passing between independent tasks to achieve a high
degree of parallelization. OpenMP, on the other hand, is a general term for a completely different
programming interface that is using compiler-directives and which has NOT much to do with MPI. So
OpenMP is NOT MPI, while OpenMPI is MPI, but NOT OpenMP.

The SLURM Workload Manager

The software that decides which job to run when and where in the cluster is called SLURM. SLURM
(Simple Linux Utility for Resource Management) is a free open-source batch scheduler and resource
manager that allows users to run their jobs on the LUIS compute cluster. It is a modern, extensible
batch system that is installed on many clusters of various sizes around the world. This chapter
describes the basic tasks necessary for submitting, running and monitoring jobs under the SLURM
Workload Manager on the LUIS cluster. Detailed information about SLURM can be found on the official
SLURM website.

Here are some of the most important commands to interact with SLURM:

sbatch - submit a batch script
salloc - allocate compute resources
srun - allocate compute resources and launch job-steps
squeue - check the status of running and/or pending jobs
scancel - delete jobs from the queue
sinfo - view intormation abount cluster nodes and partitions
scontrol - show detailed information on active and/or recently completed jobs, nodes and
partitions
sacct - provide the accounting information on running and completed jobs
slurmtop - text-based view of cluster nodes' free and in-use resources and status of jobs

Some usage examples for these commands are provided below. As always, you can find out more
using the manual pages on a terminal/console on the system (like man squeue) or on the SLURM
manuals' website.

Partitions

Compute nodes with similar hardware attributes (like e.g. the same cpu) in the cluster are usually
grouped in partitions. Each partition can be regarded as somewhat independent from others. A batch
job can be submitted in such a way that it can run on one of several partitions, and a compute node
may also belong to several partitions simultaneously to facilitate selection. Jobs are allocated
resources like cpu cores, memory and time within a single partition for executing tasks on the cluster.

https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/man_index.html

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

A concept called “job steps” is used to execute several tasks simultaneously or sequentially within a
job using the srun command.

The table below lists the currently defined partitions and their parameters/constraints:

Part of cluster Max Job
Runtime

Max
Nodes
Per Job

Max
CPUs
per User

Default
Runtime

Default
Memory per
CPU

Shared
Node
Usage

amo, dumbo, haku,
lena, taurus, …
(generic)

200 hours 800 24 hours 4000 MB yes

GPU nodes 48 hours 1 1 hour 1600 MB yes
SMP nodes 200 hours 1 512 12 hours 4000 MB yes

To keep things fair, control job workload and keep SLURM responsive, we enforce some additional
restrictions:

SLURM limits Max number of jobs running Max number of jobs submitted
per user 64 500
cluster-wide 10000 20000

Based on available resources and when still able to maintain a fair balance between all users' needs,
we may sometimes also consider requests for a higher priority for a short time, which may be
submitted to cluster-help@luis.uni-hannover.de. You should include an explanation for what period of
time you need which kind of priority, and of course why we should consider your request regarding
the fact that usually all other users want priority, too.

To list job limits relevant for you, use the sacctmgr command:

 sacctmgr -s show user
 sacctmgr -s show user format=user,account,maxjobs,maxsubmit,maxwall,qos

Up-to-date information on ALL available nodes:

 sinfo -Nl
 scontrol show nodes

Information on partitons and their configuration:

 sinfo -s
 scontrol show partitions

The clusterinfo command (Python script) retrieves real-time information about node and partition
configurations, resource (CPU/GPU) usage, and user access rights to resources through native SLURM
commands and displays the data in a structured format for easier interpretation. It shows which
nodes are accessible by all users and which are reserved for specific research groups with exclusive
access during configured times (see Forschungscluster-Housing). By executing clusterinfo -l,
your configured SLURM limits (such as the maximum number of running and pending jobs, maximum
wall clock time, etc.) will also be displayed. For a list of available options and their descriptions, run
clusterinfo -h.

mailto:cluster-help@luis.uni-hannover.de
https://www.luis.uni-hannover.de/de/services/computing/forschungscluster-housing/

2025/10/25 17:56 5/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

Interactive jobs

Please note: when you have a non-interactive (standard) reservation/running job on a node or a set of
nodes, you may also directly open additional shell(s) to that node(s) coming from a login node, e.g.
for watching/debugging/changing what happens. But beware: you will get kicked out as soon as your
job finishes.

Batch submission is the most common and most efficient way to use the computing cluster.
Interactive jobs are also possible; they may be useful for things like:

working with an interactive terminal or GUI applications like R, iPython, ANSYS, MATLAB, etc.
software development, debugging, or compiling

You can start an interactive session on a compute node using the SLURM salloc command. The
following example submits an interactive job that requests 12 tasks (this corresponds to 12 MPI ranks)
on two compute nodes and 4 GB memory per CPU core for an hour:

[user@login02 ~]$ salloc --time=1:00:00 --nodes=2 --ntasks=12 --mem-per-
cpu=4G --x11
 salloc: slurm_job_submit: set partition of submitted job to amo,tnt,gih
 salloc: Pending job allocation 27477
 salloc: job 27477 queued and waiting for resources
 salloc: job 27477 has been allocated resources
 salloc: Granted job allocation 27477
 salloc: Waiting for resource configuration
 salloc: Nodes amo-n[001-002] are ready for job
[user@amo-n001 ~]$

The option --x11 sets up X11 forwarding on the first(master) compute node enabling the use of
graphical applications.

Note: Unless you specify a cluster partition explicitly, all partitions that you have access to will be
available for your job.

Note: If you do not explicitly specify memory and time parameters for your job, the corresponding
default values for the cluster partition to which the job will be assigned will be used. To find out the
default time and memory settings for a partition, e.g. amo, look at the DefaultTime and
DefMemPerCPU values in the scontrol show partitions amo command output.

Note: In case you get an error message like srun: Warning: can't honor --ntasks-per-
node set to X which doesn't match the requested tasks YY with the number of
requested nodes ZZ. Ignoring, check (using set | grep SLURM_N within the job shell, for
example) that your request has been honored despite the message, and then ignore the message.

Once the job starts, you will get an interactive shell on the first compute node (amo-n001 in the
example above) that has been assigned to the job, where you can interactively spawn your
applications. The following example compiles and executes the MPI Hello World program (save the
source code to the file hello_mpi.c):

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

hello_mpi.c

#include "mpi.h"
#include <stdio.h>

int main (int argc, char** argv) {
 int ntasks, taskid, len;
 char hostname[MPI_MAX_PROCESSOR_NAME];

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD,&ntasks);
 MPI_Comm_rank(MPI_COMM_WORLD,&taskid);
 MPI_Get_processor_name(hostname, &len);

 printf ("Hello from task %d of %d on %s\n", taskid, ntasks,
hostname);

 MPI_Finalize();
}

[user@amo-n001 ~]$ module load GCC/9.3.0 OpenMPI/4.0.3
[user@amo-n001 ~]$ mpicc hello_mpi.c -o hello_mpi
[user@amo-n001 ~]$ srun --ntasks=6 --distribution=block hello_mpi
 Hello from task 0 of 6 on amo-n001
 Hello from task 1 of 6 on amo-n001
 Hello from task 2 of 6 on amo-n001
 Hello from task 3 of 6 on amo-n001
 Hello from task 4 of 6 on amo-n001
 Hello from task 5 of 6 on amo-n002

Note: If you want to run a parallel application using Intel MPI Library (e.g by loading the module
impi/2020a) then provide the srun command with an additional option --mpi=pmi2

Note: Environment variables set on the login node from which the job was submitted are not passed
to the job.

The interactive session is terminated by typing exit on the shell:

[user@amo-n001 ~]$ exit
 logout
 salloc: Relinquishing job allocation 27477

Alternatively you can use the srun --pty $SHELL -l command to interactively allocate compute
resources, e.g.

[user@login02 ~]$ srun --time=1:00:00 --nodes=2 --ntasks=12 --mem-per-cpu=4G
--x11 --pty $SHELL -l
 srun: slurm_job_submit: set partition of submitted job to amo,tnt,gih
[user@amo-n004 ~]$

https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide?do=export_code&codeblock=4
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2025/10/25 17:56 7/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

At this point, we would like to note that SLURM differentiates between --ntasks, which may roughly
be translated into the number of (independent) MPI-ranks or instances of a job, and --cores-per-
task, which may translate into the number of (OpenMP) threads. MPI-jobs usually request --ntasks
larger than one, while OpenMP-jobs may request --ntasks=1 and --cores-per-task higher than
one.

If you want to run your jobs on nodes with a specific CPU type, you can request them using the SLURM
option --constraint=CPU_ARCH:<cpu_arch>, where <cpu_arch> can currently have the
following values: sse, avx, avx2, and avx512.

To check the available CPU architectures for different SLURM partitions and nodes, you can use the
command clusterinfo -n -i.

If your job can run on nodes with any of multiple CPU types, you can specify them using the following
syntax: --constraint=[CPU_ARCH:<cpu_arch1>,CPU_ARCH:<cpu_arch1>,…].

Submitting a batch script

A SLURM job submission file for your job (a “batch script”) is a shell script with a set of additional
directives that are only interpreted by the batch system (Slurm) at the beginning of the file. These
directives are marked by starting the line with the string #SBATCH, so the batch system knows that
the following parameters and commands are not just a comment (which the # character otherwise
would imply). The shell (the command line interpreter of Unix) usually ignores everything that follows
a # character. But at the beginning of your file, the Slurm commands used to submit a batch script
will also check whether the # character is immediately followed by SBATCH. If that is the case, the
batch system will interpret the following characters as directives. Processing of these directives stops
once the first non-comment non-whitespace line has been reached in the script. The very first line of
your script usually should read #!/bin/bash - ask Wikipedia for the meaning of “Shebang (Unix)” in
case you want to understand what this is for.

Valid directives can be found using the command man sbatch. In principle, you may write almost
any option that you could feed to sbatch at the command line as a #SBATCH-line in your script.

A suitable batch script is usually submitted to the batch system using the sbatch command.

An example of a serial job

The following is an example of a simple serial job script (save the lines to the file test_serial.sh).

Note: change the #SBATCH directives to your use case where applicable.

example_serial_slurm.sh

#!/bin/bash -l
#SBATCH --job-name=test_serial
#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=2G
#SBATCH --time=00:20:00
#SBATCH --constraint=[CPU_ARCH:avx512|CPU_ARCH:avx2]

https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide?do=export_code&codeblock=8

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

#SBATCH --mail-user=user@uni-hannover.de
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --output test_serial-job_%j.out
#SBATCH --error test_serial-job_%j.err

Change to my work dir
SLURM_SUBMIT_DIR is an environment variable that automatically gets
assigned the directory from which you did submit the job. A batch job
is like a new login, so you'll initially be in your HOME directory.
So it's usually a good idea to first change into the directory you
did
submit your job from.
cd $SLURM_SUBMIT_DIR

Load the modules you need, see corresponding page in the cluster
documentation
module load my_modules

Start my serial app
srun is needed here only to create an entry in the accounting system,
but you could also start your app without it here, since it's only
serial.
srun ./my_serial_app

To submit the batch job, use

 sbatch example_serial_slurm.sh

Note: as soon as compute nodes are allocated to your job, you can establish an ssh connection from
the login machines to these nodes.

Note: if your job oversteps the resource limits that you have defined in your #SBATCH directives, the
job will automatically be killed by the SLURM server. This is particularly the case when you try to use
more memory than you allocated, which results in an OOM (out-of-memory) -event.

The table below shows frequently used sbatch options that can either be specified in your job script
with the #SBATCH directive or on the command line. Command line options override options in the
script. The commands srun and salloc accept the same set of options. Both long and short options
are listed.

Options Default Value Description
--nodes=<N> or -N <N> 1 Number of compute nodes
--tasks=<N> or -n <N> 1 Number of tasks to run
--cpus-per-task=<N> or -c <N> 1 Number of CPU cores per task
--ntasks-per-node=<N> 1 Number of tasks per node
--ntasks-per-core=<N> 1 Number of tasks per CPU core

--mem-per-cpu=<mem> partition
dependent memory per CPU core in MB

2025/10/25 17:56 9/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

Options Default Value Description

--mem=<mem> partition
dependent memory per node in MB

--gres=gpu:<type>:<N> - Request nodes with GPUs; <type> may
be omitted (thus: --gres=gpu:<N>)

--time=<time> or -t <time> partition
dependent Walltime limit for the job

--partition=<name> or -p <name> none Partition to run the job

--constraint=<list> or -C <list> none
Node-features to request; to find out the
features assigned to a specific node, use
e.g. scontrol show nodes
<nodename>

--job-name=<name> or -J <name> job script’s name Name of the job
--output=<path> or -o <path> slurm-%j.out Standard output file
--error=<path> or -e <path> slurm-%j.err Standard error file
--mail-user=<mail> your account mail User’s email address
--mail-type=<mode> – Event types for notifications
--exclusive nodes are shared Exclusive acccess to node

To obtain a complete list of parameters, refer to the sbatch man page: man sbatch

Note: if you submit a job with --mem=0, it gets access to the complete memory configured in SLURM
for each node allocated.

By default, the stdout and stderr file descriptors of batch jobs are directed to slurm-%j.out and
slurm-%j.err files, where %j is set to the SLURM batch job ID number of your job. Both files will be
found in the directory in which you launched the job. You can use the options --output and --
error to specify a different name or location. The output files are created as soon as your job starts,
and the output is redirected as the job runs so that you can monitor your job’s progress. However,
due to SLURM performing file buffering, the output of your job will not appear in the output files
immediately. To override this behaviour (this is not recommended in general, especially when
the job output is large), you may use -u or --unbuffered either as an #SBATCH directive or
directly on the sbatch command line.

If the option --error is not specified, both stdout and stderr will be directed to the file specified by -
-output.

Example of an OpenMP job

For OpenMP jobs, you will need to set --cpus-per-task to a value larger than one and explicitly
define the OMP_NUM_THREADS variable. The example script launches eight threads, each with 2 GiB
of memory and a maximum run time of 30 minutes.

example_openmp_slurm.sh

#!/bin/bash -l
#SBATCH --job-name=test_openmp
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8

https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide?do=export_code&codeblock=10

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

#SBATCH --mem-per-cpu=2G
#SBATCH --time=00:30:00
#SBATCH --constraint=[CPU_ARCH:avx512|CPU_ARCH:avx2]
#SBATCH --mail-user=user@uni-hannover.de
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --output test_openmp-job_%j.out
#SBATCH --error test_openmp-job_%j.err

Change to my work dir
cd $SLURM_SUBMIT_DIR

Bind your OpenMP threads
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
Intel compiler specific environment variables
export KMP_AFFINITY=verbose,granularity=core,compact,1
export KMP_STACKSIZE=64m

Load modules
module load my_module

Start my application
srun ./my_openmp_app

The srun command in the script above sets up a parallel runtime environment to launch an
application on multiple CPU cores, but on one node. For MPI jobs, you may want to use multiple CPU
cores on multiple nodes. To achieve this, have a look at the following example of an MPI job:

Note: srun should be used in place of the “traditional” MPI launchers like mpirun or mpiexec.

Example of an MPI job

This example requests 10 compute nodes on the lena cluster with 16 cores each and 320 GiB of
memory in total for a maximum duration of 2 hours.

example_mpi_slurm.sh

#!/bin/bash -l
#SBATCH --job-name=test_mpi
#SBATCH --partition=lena
#SBATCH --nodes=10
#SBATCH --ntasks-per-node=16
#SBATCH --mem-per-cpu=2G
#SBATCH --time=02:00:00
#SBATCH --mail-user=user@uni-hannover.de
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --output test_mpi-job_%j.out
#SBATCH --error test_mpi-job_%j.err

Change to my work dir

https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide?do=export_code&codeblock=11

2025/10/25 17:56 11/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

cd $SLURM_SUBMIT_DIR

Load modules
module load foss/2018b

Start my MPI application
#
Note: if you use Intel MPI Library provided by modules up to
intel/2020a, execute srun as
#
srun --mpi=pmi2 ./my_mpi_app
#
For all Intel MPI libraries set the environment variable
I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so before executing srun

srun --cpu_bind=cores --distribution=block:cyclic ./my_mpi_app

As mentioned above, you should use the srun command instead of mpirun or mpiexec in order to
launch your parallel application.

Within the same MPI job, you can use srun to start several parallel applications, each utilizing only a
subset of the allocated resources. However, the preferred way is to use a Job Array (see section). The
following example script will run 3 MPI applications simmultaneously, each using 64 tasks (4 nodes
with 16 cores each), thus totalling to 192 tasks:

example_mpi_multi_srun_slurm.sh

#!/bin/bash -l
#SBATCH --job-name=test_mpi
#SBATCH --partition=lena
#SBATCH --nodes=12
#SBATCH --ntasks-per-node=16
#SBATCH --mem-per-cpu=2G
#SBATCH --time=00:02:00
#SBATCH --constraint=[CPU_ARCH:avx512|CPU_ARCH:avx2]
#SBATCH --mail-user=user@uni-hannover.de
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --output test_mpi-job_%j.out
#SBATCH --error test_mpi-job_%j.err

Change to my work dir
cd $SLURM_SUBMIT_DIR

Load modules
module load foss/2018b

Start my MPI application
srun --cpu_bind=cores --distribution=block:cyclic -N 4 --ntasks-per-
node=16 --exclusive ./my_mpi_app_1 &
srun --cpu_bind=cores --distribution=block:cyclic -N 4 --ntasks-per-

https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide?do=export_code&codeblock=12

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

node=16 --exclusive ./my_mpi_app_1 &
srun --cpu_bind=cores --distribution=block:cyclic -N 4 --ntasks-per-
node=16 --exclusive ./my_mpi_app_2 &
wait

Note the wait command in the script; it results in the script waiting for all previously commands that
were started with $&$ (execution in the background) to finish before the job can complete. We kindly
ask to take care that the time necessary to complete each subjob is not too different in order not to
waste too much valuable cpu time

Job arrays

Job arrays can be used to submit a number of jobs with the same resource requirements. However,
some of these requirements are subject to changes after the job has been submitted. To create a job
array, you need to specify the directive #SBATCH --array in your job script or use the option --
array or -a on the sbatch command line. For example, the following script will create 12 jobs with
array indices from 1 to 10, 15 and 18:

example_jobarray_slurm.sh

#!/bin/bash -l
#SBATCH --job-name=test_job_array
#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=2G
#SBATCH --time=00:20:00
#SBATCH --mail-user=user@uni-hannover.de
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --array=1-10,15,18
#SBATCH --output test_array-job_%A_%a.out
#SBATCH --error test_array-job_%A_%a.err

Change to my work dir
cd $SLURM_SUBMIT_DIR

Load modules
module load my_module

Start my app
srun ./my_app $SLURM_ARRAY_TASK_ID

Within a job script like in the example above, the job array indices can be accessed by the variable
$SLURM_ARRAY_TASK_ID, whereas the variable $SLURM_ARRAY_JOB_ID refers the the job array’s
master job ID. If you need to limit (e.g. due to heavy I/O on the BIGWORK file system) the maximum
number of simultaneously running jobs in a job array, use a % separator. For example, the directive
#SBATCH --array 1-50%5 will create 50 jobs, with only 5 jobs active at any given time.

Note: the maximum number of jobs in a job array is limited to 300. The index number must be

https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide?do=export_code&codeblock=13

2025/10/25 17:56 13/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

smaller than 1 million.

SLURM environment variables

SLURM sets many variables in the environment of the running job on the allocated compute nodes.
Table 7.4 shows commonly used environment variables that might be useful in your job scripts. For a
complete list, see the “OUTPUT ENVIRONMENT VARIABLES” section in the sbatch man page.

SLURM environment variables

$SLURM_JOB_ID Job id
$SLURM_JOB_NUM_NODE Number of nodes assigned to the job
$SLURM_JOB_NODELIST List of nodes assigned to the job
$SLURM_NTASKS Number of tasks in the job
$SLURM_NTASKS_PER_CORE Number of tasks per allocated CPU
$SLURM_NTASKS_PER_NODE Number of tasks per assigned node
$SLURM_CPUS_PER_TASK Number of CPUs per task
$SLURM_CPUS_ON_NODE Number of CPUs per assigned node
$SLURM_SUBMIT_DIR Directory the job was submitted from
$SLURM_ARRAY_JOB_ID Job id for the array
$SLURM_ARRAY_TASK_ID Job array index value
$SLURM_ARRAY_TASK_COUNT Number of jobs in a job array
$SLURM_GPUS Number of GPUs requested

GPU jobs on the cluster

The LUIS cluster has a number of nodes that are equipped with NVIDIA GPU Cards.

Currently, the gpu partition provides general access to the following GPU nodes:

4 nodes equipped with 4× NVIDIA H200 GPUs each (named smp-25-n00x),
4 nodes equipped with 2× NVIDIA Tesla V100 GPUs each, and
3 nodes equipped with 4× NVIDIA A100 GPUs each (named euklid-n00x).

For more information about the available nodes, please refer to the Available Hardware Table.

So the ressources regularly available to all users are still relatively scarce, and respecting the tip in
this page's introduction to start small to first test your jobs really is important — or you will possibly
just wait for a long time, only to see your job instantly crashing. So the more pressure you have, the
more thorough you should test your job first.

There's also some additional ressources available that you might have a fair chance to use. Several
institutes have entrusted us with running their nodes in the so-called FCH service
(“Forschungscluster-Housing”, consult the LUIS-website for details). These nodes are usually reserved
during daytime Mo-Fr 08:00-20:00 for the respective institute, but during the night and on weekends,
they participate in the common queue. Whether you can run a job there will mainly depend on the
respective institute's own usage, and of course your job has to request a walltime shorter than 12
hours during the week to squeeze in. To try your luck on FCH nodes, omit the --partition=gpu

https://docs.cluster.uni-hannover.de/doku.php/resources/computing_hardware

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

request.

Use the following command to display the current status of all nodes in the gpu partition and the
computing resources they provide, including type and number of GPUs:

sinfo --partition gpu -Node --
Format="nodelist:15,memory:8,disk:10,cpusstate:15,gres:30,gresused:40"
NODELIST MEMORY TMP_DISK CPUS(A/I/O/T) GRES
GRES_USED
euklid-n001 125000 291840 2/38/0/40 gpu:v100:2(S:0-1)
gpu:v100:2(IDX:0-1)
euklid-n002 125000 291840 2/38/0/40 gpu:v100:2(S:0-1)
gpu:v100:2(IDX:0-1)
euklid-n003 125000 291840 2/38/0/40 gpu:v100:2(S:0-1)
gpu:v100:2(IDX:0-1)
euklid-n004 125000 291840 2/38/0/40 gpu:v100:2(S:0-1)
gpu:v100:2(IDX:0-1)
euklid-n005 1025000 3600000 4/44/0/48 gpu:a100m40:4(S:0-1)
gpu:a100m40:4(IDX:0-3)
euklid-n006 1025000 3600000 4/44/0/48 gpu:a100m40:4(S:0-1)
gpu:a100m40:4(IDX:0-3)
euklid-n007 1025000 3600000 4/44/0/48 gpu:a100m40:4(S:0-1)
gpu:a100m40:4(IDX:0-3)

To inquire about all nodes that have at least one gpu, including those reserved during daytime for
FCH, use

sinfo --Node --
Format="nodelist:15,memory:8,disk:10,cpusstate:15,gres:30,gresused:30" |
grep -v null

To ask for GPU resources, you need to add the directive #SBATCH --gres=gpu:<type>:n to your
job script, or on the command line, respectively, “n” being the number of GPUs requested. The type of
GPU can be omitted. Thus, #SBATCH --gres=gpu:n will give you a wider selection of potential
nodes to run the job. The following job script requests 2 Tesla V100 GPUs, 8 CPUs in the gpu partition
and 30 minutes of wall time:

example_gpu_slurm.sh

#!/bin/bash -l
#SBATCH --job-name=test_gpu
#SBATCH --partition=gpu
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --gres=gpu:v100:2
#SBATCH --mem-per-cpu=2G
#SBATCH --time=00:30:00
#SBATCH --mail-user=user@uni-hannover.de
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --output test_gpu-job_%j.out
#SBATCH --error test_gpu-job_%j.err

https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide?do=export_code&codeblock=16

2025/10/25 17:56 15/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

Change to my work dir
cd $SLURM_SUBMIT_DIR

Load modules
module load fosscuda/2018b

Run GPU application
srun ./my_gpu_app

When submitting a job to the gpu partition, you must specify the number of GPUs. Otherwise, your
job will be rejected at the submission time.

Note: In the gpu partition, the number of CPU cores that can be requested per GPU is limited.

Note: The maximum runtime for jobs in the gpu partition is limited to 48 hours.

Note: To specifically request NVIDIA H200 GPUs, set the GPU type in the directive --
gres=gpu:<type>:<n> to h200.

Job status and control commands

This section provides an overview of commonly used SLURM commands that allow you to monitor and
manage the status of your batch jobs.

Query commands

The status of your jobs in the queue can be queried using

 $ squeue

or – if you have array jobs and want to display one job array element per line –

 $ squeue -a

Note that the symbol $ in the above commands and all other commands below represents the shell
prompt. The $ is NOT part of the specified command, do NOT type it yourself.

The squeue output should look more or less like the following:

 $ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 412 gpu test username PD 0:00 1 (Resources)
 420 gpu test username PD 0:00 1 (Priority)
 422 gpu test username R 17:45 1 euklid-n001
 431 gpu test username R 11:45 1 euklid-n004
 433 gpu test username R 12:45 1 euklid-n003

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

 434 gpu test username R 1:08 1 euklid-n002
 436 gpu test username R 16:45 1 euklid-n002

ST shows the status of your job. JOBID is the number the system uses to keep track of your job.
NODELIST shows the nodes allocated to the job, NODES the number of nodes requested and – for jobs
in the pending state (PD) – a REASON. TIME shows the time used by the job. Typical job states are
PENDING(PD), RUNNING(R), COMPLETING(CG), CANCELLED(CA), FAILED(F) and SUSPENDED(S).
For a complete list, see the “JOB STATE CODES” section in the squeue man page.

You can change the default output format and display other job specifications using the option --
format or -o. For example, if you want to additionally view the number of CPUs and the walltime
requested:

 $ squeue --format="%.7i %.9P %.5D %.5C %.2t %.19S %.8M %.10l %R"
 JOBID PARTITION NODES CPUS TRES_PER_NODE ST MIN_MEMORY TIME
TIME_LIMIT NODELIST(REASON)
 489 gpu 1 32 gpu:2 PD 2G 0:00
20:00 (Resources)
 488 gpu 1 8 gpu:1 PD 2G 0:00
20:00 (Priority)
 484 gpu 1 40 gpu:2 R 1G 16:45
20:00 euklid-n001
 487 gpu 1 32 gpu:2 R 2G 11:09
20:00 euklid-n004
 486 gpu 1 32 gpu:2 R 2G 12:01
20:00 euklid-n003
 485 gpu 1 16 gpu:2 R 1G 16:06
20:00 euklid-n002

Note that you can make the squeue output format permanent by assigning the format string to the
environment variable SQUEUE_FORMAT in your $HOME/.bashrc file:

 $ echo 'export SQUEUE_FORMAT="%.7i %.9P %.5D %.5C %.13b %.2t %.19S %.8M
%.10l %R"'>> ~/.bashrc

The option %.13b in the variable assignment for SQUEUE_FORMAT above displays the column
TRES_PER_NODE in the squeue output, which provides the number of GPUs requested by each job.

The following command displays all job steps (processes started using srun):

 squeue -s

To display estimated start times and compute nodes to be allocated for your pending jobs, type

 $ squeue --start
 JOBID PARTITION NAME USER ST START_TIME NODES SCHEDNODES
NODELIST(REASON)
 489 gpu test username PD 2020-03-20T11:50:09 1 euklid-n001
(Resources)
 488 gpu test username PD 2020-03-20T11:50:48 1 euklid-n002
(Priority)

2025/10/25 17:56 17/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

A job may be waiting for execution in the pending state for a number of reasons. If there are multiple
reasons for the job to remain pending, only one is displayed.

Priority - the job has not yet gained a high enough priority in the queue
Resources - the job has sufficient priority in the queue, but is waiting for resources to become
available
JobHeldUser - job held by user
Dependency - job is waiting for another job to complete
PartitionDown - the queue is currently closed for new jobs

For the complete list, refer to the squeue man page the section “JOB REASON CODES”.

If you want to view more detailed information about each job, use

 $ scontrol -d show job

If you are interested in the detailed status of one specific job, use

 $ scontrol -d show job <job-id>

Replace <job-id> by the ID of your job.

Note that the command scontrol show job will display the status of jobs for up to 5 minutes after
their completion. For batch jobs that finished more than 5 minutes ago, you need to use the sacct
command to retrieve their status information from the SLURM database (see section).

The sstat command provides real-time status information (e.g. CPU time, Virtual Memory (VM)
usage, Resident Set Size (RSS), Disk I/O, etc.) for running jobs:

 # show all status fields
 sstat -j <job-id>

 # show selected status fields
 sstat --format=AveCPU,AvePages,AveRSS,AveVMSize,JobID -j <job-id>

Note: the above commands only display your own jobs in the SLURM job queue.

Job control commands

The following command cancels a job with ID number <job-id>:

 $ scancel <job-id>

Remove all of your jobs from the queue at once using

 $ scancel -u $USER

If you want to cancel only array ID <array_id> of job array <job_id>:

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

 $ scancel <job_id>_<array_id>

If only job array ID is specified in the above command, then all job array elements will be canceled.

The commands above first send a SIGTERM signal, then wait 30 seconds, and if processes from the
job continue to run, issue a SIGKILL signal.

The -s option allows you to issue any signal to a running job which means you can directly
communicate with the job from the command line, provided that it has been prepared for this:

 $ scancel -s <signal> <job-id>

A job in the pending state can be held (prevented from being scheduled) using

 $ scontrol hold <job-id>

To release a previously held job, type

 $ scontrol release <job-id>

After submitting a batch job and while the job is still in the pending state, many of its specifications
can be changed. Typical fields that can be modified include job size (amount of memory, number of
nodes, cores, tasks and GPUs), partition, dependencies and wall clock limit. Here are a few examples:

 # modify time limit
 scontrol update JobId=279 TimeLimit=12:0:0

 # change number of tasks
 scontrol update jobid=279 NumTasks=80

 # change node number
 scontrol update JobId=279 NumNodes=2

 # change the number of GPUs per node
 scontrol update JobId=279 Gres=gpus:2

 # change memory per allocated CPU
 scontrol update Jobid=279 MinMemoryCPU=4G

 # change the number of simultaneously running jobs of array job 280
 scontrol update ArrayTaskThrottle=8 JobId=280

For a complete list of job specifications that can be modified, see section “SPECIFICATIONS FOR
UPDATE COMMAND, JOBS” in the scontrol man page.

Job accounting commands

The sacct command is primarily designed to display job data from the SLURM accounting database,
specifically for jobs that have exited the queue (e.g., completed, failed, or canceled). If a job is still

2025/10/25 17:56 19/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

running, tools like sstat or squeue might provide more current metrics. Here are a few usage
examples:

 # list IDs of all your jobs since January 2019
 sacct -S 2019-01-01 -o jobid

 # show brief accounting data of the job with <job-id>
 sacct -j <job-id>

 # display all job accounting fields
 sacct -j <job-id> -o ALL

The complete list of job accounting fields can be found in section “Job Accounting Fields” in the sacct
man page. You could also use the command sacct --helpformat

Analyzing Job Efficiency

Monitoring job efficiency helps reduce queue waiting times by identifying resource allocation
mismatches (e.g., over-requesting CPUs or memory). Efficient resource utilization not only ensures
faster job completion but also increases overall system throughput, enabling more users to benefit
from the cluster.

Seff

seff is a command-line tool used to display resource utilization efficiency for completed jobs.

Note: The job must be completed; seff does not work for running jobs.

Syntax

 seff <job_id>

Sample Output

Job ID: 12345
Cluster: luis
User/Group: user/group
State: COMPLETED
Nodes: 1
Cores: 8
CPU Utilized: 02:00:00
CPU Efficiency: 25% of 08:00:00 core-walltime
Memory Utilized: 4 GB
Memory Efficiency: 50% of 8 GB requested

CPU Efficiency: Calculated as the ratio of CPU time used to the total CPU time allocated (cores
× walltime). Low efficiency indicates under-utilized cores.
Memory Efficiency: Indicates how much of the requested memory was actually consumed.

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

Over-requesting memory can lead to wasted resources.

Reportseff

The reportseff command is a tool available on the cluster to help users analyze the efficiency of
their Slurm jobs. While seff focuses on a single job, allowing you to evaluate resource utilization per
job ID, reportseff provides broader capabilities, including:

Analyzing jobs over a specified time period (e.g., --since and --until options)
Filtering jobs based on partition, job state, or multiple job IDs simultaneously
Generating efficiency details for a single or all array job elements

The tool reads accounting data via sacct and is particularly helpful for identifying how effectively
resources are being used, enabling users to adjust job submissions for optimal performance.

This example generates a report for jobs completed in the last 3 days, including additional fields for
the requested time limit (timelimit), CPUs (reqcpus), and memory (reqmem)

reportseff --since now-3days --until now --state COMPLETED --format
+timelimit,reqcpus,reqmem

JobID State Elapsed TimeEff CPUEff MemEff
Timelimit ReqCPUS ReqMem
4043949 COMPLETED 6-01:43:06 97.1% 23.0% 15.3%
6-06:00:00 64 512G
4048121 COMPLETED 5-00:21:51 60.2% 20.8% 100.0%
8-08:00:00 48 128G
4056804 COMPLETED 4-21:07:01 61.0% 87.7% 15.0%
8-00:00:00 12 48G
4059203 COMPLETED 5-05:39:14 65.4% 13.6% 9.2%
8-00:00:00 8 128G
4059230 COMPLETED 4-19:06:34 60.0% 8.9% 58.3%
8-00:00:00 8 128G
4059298 COMPLETED 5-07:27:45 66.4% 13.2% 25.3%
8-00:00:00 8 128G
4059303 COMPLETED 4-16:25:54 58.6% 13.0% 23.2%
8-00:00:00 8 128G
4059317 COMPLETED 4-23:42:34 62.3% 12.9% 20.9%
8-00:00:00 8 128G
4066049 COMPLETED 3-10:06:40 85.5% 18.4% 3.0%
4-00:00:00 16 64G
4067800 COMPLETED 3-05:45:30 46.3% 99.5% 12.0%
7-00:00:00 36 108G
...

The tool is pre-installed and ready for use on the cluster. For further information, refer to the
reportseff GitHub page.

https://github.com/troycomi/reportseff

2025/10/25 17:56 21/22 SLURM usage guide

Cluster Docs - https://docs.cluster.uni-hannover.de/

How the scheduler works

The scheduler has to consider many constraints, rules, priorities and limits until a particular job gets
scheduled. The definitive guide can be found on SLURM's website. Some of the factors to consider
when you want to ask “why does my job not run?” are:

→ First, there's priorities. Compare your job's priority against that of others (e.g. with a command like
squeue –states=pending,configuring –sort=-p,-i –priority –Format=“JobID:11
,UserName:9 ,StateCompact:3 ,NumNodes:.3 ,NumCPUs:.4 ,MinCPUs:.5
,MinMemory:.5 ,TimeLimit:.11 ,SubmitTime:.20 ,StartTime:.20 ,PriorityLong:8
,TRES-per-node:20 ,Partition:15”). If other jobs have higher priority, they will get considered
first. Only if jobs with higher priority have resource requests that currently can not be fulfilled, the
next jobs in order will get considered. Jobs that do not yet have priority, but could instantly run on
currently free resources and finish before any prioritized job could use them, may get run instantly via
a mechanism called “backfill”. The important thing is that they will ONLY run if they block no priority
job in ANY of their respective dimensions, like walltime, cpu count, memory, …

→ Next, check whether your job may have resource requests that are difficult to fulfill. Compare the
resources listed in our Available Hardware Table and ask on which partitions your job could run at all.
If you want to configure your jobs to use a particular partition, e.g. because you know your software
can use cpu-specific features like AVX-512, try the commands scontrol show partition
<partitionname> and scontrol show node <nodename-n001> to show which resources every
node in the cluster exactly provides.

→ If you are in doubt whether any of your jobs would run, you could try to submit a very small and
short (!) job (ex. 1 cpu core, 2 GB mem, 10 minutes, like salloc –nodes=1 –ntasks=1 –mem=2GB
–time=10:00). Even with such a job, the “problem” could just be that the ressources of the cluster
are not infinitely large. A future reservation for somebody else may prevent your job from starting
immediately. Or, in case some nodes have not been used for a while, they will have been powered-
down automatically to save energy. That means that if you just see a message “queued and waiting
for resources”, it may also mean that in the background, a node has begun to boot just for your job,
and in about 10 minutes time, your job and any of the same kind you would care to submit afterwards
will start almost instantly.

→ We take only moderate influence on how many jobs our users may submit. The scheduler will try to
at least run at least one job of every user before turning to the next job of the same user, provided
the resources for other jobs are available. In case the cluster is really empty, up to 64 jobs of one user
will run at the same time, and if they all request 200 hours of wall time, that may in extreme cases
mean that others will wait for a correspondingly long time until new resources become free.

Generally speaking, the cluster is a shared tool for hundreds of users. We often get requests (“the
resources are free, why does my job not start?”) that show a lack of awareness that at any instant,
there possibly are many users on the system waiting for many jobs' execution.

So the conclusion is: just because something matching the requirements of your job currently appears
to be free, this does NOT automatically mean that the scheduler will pick or even consider exactly
your job as the next to run. Scheduling is a little bit like a more complicated version of stock trading,
in case the comparison helps someone…

https://slurm.schedmd.com/overview.html
https://docs.cluster.uni-hannover.de/doku.php/resources/computing_hardware

Last update: 2025/10/21 09:47 guide:slurm_usage_guide https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 17:56

From:
https://docs.cluster.uni-hannover.de/ - Cluster Docs

Permanent link:
https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

Last update: 2025/10/21 09:47

https://docs.cluster.uni-hannover.de/
https://docs.cluster.uni-hannover.de/doku.php/guide/slurm_usage_guide

	SLURM usage guide
	Why use a cluster at all?
	Parallelization Basics
	The SLURM Workload Manager
	Partitions
	Interactive jobs
	Submitting a batch script
	An example of a serial job
	Example of an OpenMP job
	Example of an MPI job
	Job arrays

	SLURM environment variables
	GPU jobs on the cluster
	Job status and control commands
	Query commands
	Job control commands
	Job accounting commands
	Analyzing Job Efficiency
	Seff
	Reportseff

	How the scheduler works

