
2025/10/25 22:27 1/17 Modules & Application Software

Cluster Docs - https://docs.cluster.uni-hannover.de/

Modules & Application Software

The number of software packages that are installed together with the operating system on cluster
nodes is kept light on purpose. Additional packages and applications are provided by a module
system, which enables you to easily customise your working environment on the cluster. This module
system is called Lmod1) . Furthermore, we can provide different versions of the software which you
can use on demand. Loading a module, software specific settings are applied, e.g. changing
environment variables like PATH, LD_LIBRARY_PATH and MANPATH.

Alternatively, you can manage software packages on the cluster yourself by building software from
source, by means of EasyBuild or by using Singularity containers. Python packages can also be
installed using the Conda manager. The first three possibilities, in addition to the module system, are
described in the current section, whereas Conda usage in the cluster is explained in this section.

We have adopted a systematic software naming and versioning convention in conjunction with the
software installation system EasyBuild 2) .

Software installation on the cluster utilizes a hierarchical software module naming scheme. This
means that the command module avail does not display all installed software modules right away.
Instead, only the modules that are immediately available for loading are displayed. More modules
become available after their prerequisite modules are loaded. Specifically, loading a compiler module
or MPI implementation module will make available all the software built with those applications. This
way, he hope the prerequisites for certain software become apparent.

At the top level of the module hierarchy, there are modules for compilers, toolchains and software
applications that come as a binary and thus do not depend on compilers. Toolchain modules organize
compilers, MPI implementations and numerical libraries. Currently the following toolchain modules are
available:

Compiler only toolchains
GCC: GCC updated binutils
iccifort: Intel compilers, GCC

Compiler & MPI toolchains
gompi: GCC, OpenMPI
iimpi: iccifort, Intel MPI
iompi: iccifort, OpenMPI

Compiler & MPI & numerical libraries toolchains
foss: gompi, OpenBLAS, FFTW, ScaLAPACK
intel: iimpi, Intel MKL
iomkl: iompi, Intel MKL

Note that Intel compilers newer than 2020.x are provided by the toolchain module intel-
compilers. It is strongly recommended to use this module as after 2023 the intel compiler modules
iccifort will be removed.

https://docs.cluster.uni-hannover.de/doku.php/guide/soft/miniconda3

Last
update:
2025/03/24
13:36

guide:modules_and_application_software https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 22:27

Working with modules

This section explains how to use software modules.

List the entire list of possible modules

 module spider

The same in a more compact list

 module -t spider

Search for specific modules that have “string” in their name

 module spider string

Detailed information about a particular version of a module (including instructions on how to load the
module)

 module spider name/version

Searches for all module names and descriptions that contain the specified string

 module key string

List modules immediately available to load

 module avail

Some software modules are hidden from the avail and spider commands. These are mostly
modules for system library packages that other user applications depend on. To list hidden modules,
you may provide the –show-hidden option to the avail and spider commands:

 module --show-hidden avail
 module --show-hidden spider

A hidden module has a dot (.) in front of its version numbers (eg. zlib/.1.2.8).

List currently loaded modules

 module list

Load a specific version of a module

 module load name/version

If only a name is given, the command will load the default version which is marked with a (D) in the

2025/10/25 22:27 3/17 Modules & Application Software

Cluster Docs - https://docs.cluster.uni-hannover.de/

module avail listing (usually the latest version). Loading a module may automatically load other
modules it depends on.

It is not possible to load two versions of the same module at the same time.

To switch between different modules

 module swap old new

To unload the specified module from the current environment

 module unload name

To clean your environment of all loaded modules

 module purge

Show what environment variables the module will set

 module show name/version

Save the current list of modules to “name” collection for later use

 module save name

Restore modules from collection “name”

 module restore name

List of saved collections

 module savelist

To get the complete list of options provided by Lmod through the command module type the
following

 module help

Exercise: Working with modules

As an example, we show how to load the gnuplot module.

List loaded modules

 module list

No modules loaded

Find available gnuplot versions

Last
update:
2025/03/24
13:36

guide:modules_and_application_software https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 22:27

 module -t spider gnuplot

gnuplot/4.6.0
gnuplot/5.0.3

Determine how to load the selected gnuplot/5.0.3 module

 module spider gnuplot/5.0.3

--

 gnuplot: gnuplot/5.0.3
--

 Description:
 Portable interactive, function plotting utility - Homepage:
http://gnuplot.sourceforge.net/

 This module can only be loaded through the following modules:

 GCC/4.9.3-2.25 OpenMPI/1.10.2

 Help:
 Portable interactive, function plotting utility - Homepage:
http://gnuplot.sourceforge.net/

Load required modules

 module load GCC/4.9.3-2.25 OpenMPI/1.10.2

Module for GCCcore, version .4.9.3 loaded
Module for binutils, version .2.25 loaded
Module for GCC, version 4.9.3-2.25 loaded
Module for numactl, version .2.0.11 loaded
Module for hwloc, version .1.11.2 loaded
Module for OpenMPI, version 1.10.2 loaded

And finally load the selected gnuplot module

 module load gnuplot/5.0.3

Module for OpenBLAS, version 0.2.15-LAPACK-3.6.0 loaded
Module for FFTW, version 3.3.4 loaded
Module for ScaLAPACK, version 2.0.2-OpenBLAS-0.2.15-LAPACK-3.6.0 loaded
Module for bzip2, version .1.0.6 loaded
Module for zlib, version .1.2.8 loaded
.............
.............

2025/10/25 22:27 5/17 Modules & Application Software

Cluster Docs - https://docs.cluster.uni-hannover.de/

In order to simplify the procedure of loading the gnuplot module, the current list of loaded modules
can be saved in a “mygnuplot” collection (the name string “mygnuplot” is, of course, arbitrary) and
then loaded again when needed as follows:

Save loaded modules to “mygnuplot”

 module save mygnuplot

Saved current collection of modules to: mygnuplot

If “mygnuplot” not is specified, the name “default” will be used.

Remove all loaded modules (or open a new shell)

 module purge

Module for gnuplot, version 5.0.3 unloaded
Module for Qt, version 4.8.7 unloaded
Module for libXt, version .1.1.5 unloaded
............
............

List currently loaded modules. This selection is empty now.

 module list

No modules loaded

List saved collections

 module savelist

Named collection list:
 1) mygnuplot

Load gnuplot module again

 module restore mygnuplot

Restoring modules to user's mygnuplot
Module for GCCcore, version .4.9.3 loaded
Module for binutils, version .2.25 loaded
Module for GCC, version 4.9.3-2.25 loaded
Module for numactl, version .2.0.11 loaded
.............
.............

Last
update:
2025/03/24
13:36

guide:modules_and_application_software https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 22:27

List of available software

In this section, you will find user guides for some of the software packages installed in the cluster. The
guides provided can, of course, not replace documentation that comes with the application. Please
read that as well.

A wide variety of application software is available in the cluster system. These applications are
located on a central storage system that is accessible by the module system Lmod via an NFS export.
Issue the command module spider on the cluster system or visit the page for a comprehensive list
of available software. If you really need a different version of an already installed application, or one
that is currently not installed, please get in touch. The main prerequisite for use of a software within
the cluster system is its availability for Linux. Furthermore, if the application requires a license, we
need to clarify additional questions.

Some select Windows applications can also be executed on the cluster system with the help of Wine
or Singularity containers. For information on Singularity, see Singularity Containers.

A current list of available software

Usage instructions

Abaqus
ANSYS / CFX
COMSOL
Conda
Conda
CPMD
FEKO
Jupyter in the cluster
MATLAB
Moose
mpiFileUtils
NFFT

Build software from source code

Note: We recommend using EasyBuild (see next section) if you want to make your software's build
process reproducible and accessible through a module environment that EasyBuild automatically
creates. EasyBuild comes with pre-configured recipes for installing thousands of scientific
applications.

Sub-clusters of the cluster system have different CPU architectures that provide different instruction
set capabilities/extensions. The command lcpuarchs (available on the login nodes) lists all available

https://docs.cluster.uni-hannover.de/doku.php/resources/available_software
https://docs.cluster.uni-hannover.de/doku.php/resources/available_software
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/abaqus
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/ansys
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/comsol
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/miniconda3
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/miniforge3
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/cpmd
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/feko
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/jupyterlab
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/matlab
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/moose
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/mpifileutils
https://docs.cluster.uni-hannover.de/doku.php/guide/soft/nfft

2025/10/25 22:27 7/17 Modules & Application Software

Cluster Docs - https://docs.cluster.uni-hannover.de/

CPU types.

login03:~$ lcpuarchs -v
CPU arch names Cluster partitions
-------------- ------------------
CPU arch names Cluster partitions
-------------- ------------------
sse LUIS[smp,helena]
 FCH[]

avx LUIS[dumbo]
 FCH[iazd,isu,itp]

avx2 LUIS[haku,lena,smp]
 FCH[ai,gih,isd,iqo,iwes,pci,fi,imuk]

avx512 LUIS[gpu,gpu.test,amo,taurus,vis]
FCH[tnt,isd,stahl,enos,pcikoe,pcikoe,isu,phd,phdgpu,muk,fi,itp]

CPU of this machine: avx2

For more verbose output type: lcpuarchs -vv

The technical sequence of these architectures is (oldest)-sse-avx-avx2-avx512-(newest).
Cpus capable of executing instructions from newer instruction sets usually are able to execute
commands from older extensions, so e.g. avx512 includes sse.

Software compiled to use a newer cpu instruction set will usually not typically abort with an “Illegal
instruction” error when run on an older cpu. The important message here is that compilers may
automatically set flags for the platform you are currently working on. If you compile your program on
a node providing avx512 instructions (e. g. the amo sub-cluster) using the gcc compiler option -
march=native, the program will usually not run on older nodes that are only equipped with cpus
providing, say, avx instructions. To check which instruction set extensions a cpu architecture
provides, you can run the command “lscpu”, which lists them in the “flags” section.

This section explains how to build a software on the cluster system to avoid the aforementioned issue
if you want to be able to submit jobs to all compute nodes without specifying the CPU type. Beware,
though, that compatibility usually comes at a price and allowing a compiler to use the newer
instruction sets will usually boost performance. Depending on your workload, the effects/speedup on
newer cpu architectures may even be called “drastic”. But there's usually no better way to tell than
testing.

In the example below we want to compile a sample software my-soft in version 3.1.

In your HOME (or, perhaps better, in your $SOFTWARE directory, if all members of your project want
to use the software) directory, create build/install directories for each available CPU architecture
listed by the command lcpuarchs -s, as well as a directory source to storing the installation
sources

Note: you can usually refer to a variable using $variable_name and all will be well. In the following
examples, however, we demonstrate the use of curly brackets around the variable's designator, which

https://docs.cluster.uni-hannover.de/doku.php/guide/storage_systems#home_-_configuration_files_and_setups_don_t_take_work_home_though
https://docs.cluster.uni-hannover.de/doku.php/guide/storage_systems#software_-_install_software_for_your_group_here

Last
update:
2025/03/24
13:36

guide:modules_and_application_software https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 22:27

will ensure proper separation of variables even in case of ambiguities (which in theory could occur in
long paths composed out of several variables). For all normal purposes, $HOME and ${HOME} or
$LUIS_CPU_ARCH and ${LUIS_CPU_ARCH} will be equivalent. If, however, you use spaces in your
directories (like dir=“my directory”), this will not be sufficient, you'll then also need to put double
quotation marks “ around the variable (like in cd “${dir}”).

 login03:~$ mkdir -p ${HOME}/sw/source
 login03:~$ eval "mkdir -p ${HOME}/sw/{$(lcpuarchs -ss)}/my-
soft/3.1/{build,install}"

Copy software installation archive to the source directory

 login03:~$ mv my-soft-3.1.tar.gz ${HOME}/sw/source

Build my-soft for each available CPU architecture by submitting an interactive job to each compute
node type requesting the proper CPU type. For example, to compile my-soft for avx512 nodes, first
submit an interactive job requesting the avx512 feature:

 login03:~$ salloc --nodes=1 --constraint=CPU_ARCH:avx512 --cpus-per-task=4
--time=6:00:00 --mem=16G

Then unpack and build the software. Note the environment variable ${LUIS_CPU_ARCH} that
contains the cpu instruction set of the compute node reserved.

 taurus-n034:~$ tar -zxvf ${HOME}/sw/source/my-soft-3.1.tgz -C
$HOME/sw/${LUIS_CPU_ARCH}/my-soft/3.1/build
 taurus-n034:~$ cd ${HOME}/sw/${LUIS_CPU_ARCH}/my-soft/3.1/build
 taurus-n034:~$./configure --prefix=${HOME}/sw/${LUIS_CPU_ARCH}/my-
soft/3.1/install && make && make install

Finally, use the environment variable ${LUIS_CPU_ARCH} in your job scripts to access the correct
installation path of my-soft executable for the current compute node. Note that you may need to
set/update the ${LD_LIBRARY_PATH} environment variable to point to the location of your
software's shared libraries.

my-soft-job.sh

#!/bin/bash -l
#SBATCH --job-name=my-soft
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=16
#SBATCH --mem=60G
#SBATCH --time=12:00:00
#SBATCH --constraint="[CPU_ARCH:avx512|CPU_ARCH:avx2]"
#SBATCH --output my-soft-job_%j.out
#SBATCH --error my-soft-job_%j.err
#SBATCH --mail-user=myemail@....uni-hannover.de
#SBATCH --mail-type=BEGIN,END,FAIL

https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software?do=export_code&codeblock=32

2025/10/25 22:27 9/17 Modules & Application Software

Cluster Docs - https://docs.cluster.uni-hannover.de/

Change to work dir
cd ${SLURM_SUBMIT_DIR}

Load modules
module load my_necessary_modules

run my_soft
export LD_LIBRARY_PATH=${HOME}/sw/${LUIS_CPU_ARCH}/my-
soft/3.1/install/lib:${LD_LIBRARY_PATH}
srun $HOME/sw/${LUIS_CPU_ARCH}/my-soft/3.1/install/bin/my-soft.exe --
input file.input

You can certainly consider combining the software build and execution steps into a single batch job
script. However, it is recommended that you first perform the build steps interactively before adding
them to a job script to ensure the software compiles without errors. For example, such a job script
might look like this:

my-soft-job.sh

#!/bin/bash -l
#SBATCH --job-name=my-soft
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=32
#SBATCH --mem=120G
#SBATCH --time=12:00:00
#SBATCH --constraint=CPU_ARCH:avx512
#SBATCH --output my-soft-job_%j.out
#SBATCH --error my-soft-job_%j.err
#SBATCH --mail-user=myemail@....uni-hannover.de
#SBATCH --mail-type=BEGIN,END,FAIL

Change to work dir
cd ${SLURM_SUBMIT_DIR}

Load modules
module load my_necessary_modules

install software if the executable does not exist
[-e "${HOME}/sw/${LUIS_CPU_ARCH}/my-soft/3.1/install/bin/my-soft.exe"
] || {
 mkdir -p ${HOME}/sw/${LUIS_CPU_ARCH}/mysof/3.1/{build,install}
 tar -zxvf ${HOME}/sw/source/my-soft-3.1.tgz -C
${HOME}/sw/${LUIS_CPU_ARCH}/my-soft/3.1/build
 cd $HOME/sw/${LUIS_CPU_ARCH}/my-soft/3.1/build
 ./configure --prefix=${HOME}/sw/${LUIS_CPU_ARCH}/my-soft/3.1/install
 make
 make install
}

https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software?do=export_code&codeblock=33

Last
update:
2025/03/24
13:36

guide:modules_and_application_software https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 22:27

run my_soft
export LD_LIBRARY_PATH=${HOME}/sw/${LUIS_CPU_ARCH}/my-
soft/3.1/install/lib:${LD_LIBRARY_PATH}
srun ${HOME}/sw/${LUIS_CPU_ARCH}/my-soft/3.1/install/bin/my-soft.exe --
input file.input

EasyBuild

Note: If you want to manually build the software from source code, please refer to the section above.

EasyBuild is a software build and installation framework that allows you to manage (scientific)
software on High Performance Computing (HPC) systems in an efficient way.

EasyBuild framework

The EasyBuild framework is available in the cluster through the module EasyBuild-custom. This
module defines the location of the EasyBuild configuration files, recipes and installation directories.
You can load the module using the command:

 module load EasyBuild-custom

EasyBuild software and modules will be installed by default under the following directory:

 $HOME/my.soft/software/${LUIS_CPU_ARCH}
 $HOME/my.soft/modules/${LUIS_CPU_ARCH}

Here, the variable ARCH, which stores the CPU type of the machine on which the above module load
command was executed, will currently be either haswell, sandybridge or skylake. The command
lcpuarchs executed on the cluster login nodes lists all currently available values of ARCH. You can
override the default software and module installation directory, and the location of your EasyBuild
configuration files (MY_EASYBUILD_REPOSITORY) by exporting the following environment variables
before loading the EasyBuild module:

 export EASYBUILD_INSTALLPATH=/your/preferred/installation/dir
 export MY_EASYBUILD_REPOSITORY=/your/easybuild/repository/dir
 module load EasyBuild-custom

If other project members should also have access to the software, the recommended location is a
subdirectory in $SOFTWARE.

How to build your software

After you load the EasyBuild environment as explained in the section above, you will have the

https://docs.cluster.uni-hannover.de/doku.php/guide/storage_systems#software_-_install_software_for_your_group_here

2025/10/25 22:27 11/17 Modules & Application Software

Cluster Docs - https://docs.cluster.uni-hannover.de/

command eb available to build your code using EasyBuild. If you want to build the code using a given
configuration <filename>.eb and resolving dependencies, you will use the flag -r as in the
example below:

 eb <filename>.eb -r

The build command just needs the configuration file name with the extension .eb and not the full
path, provided that the configuration file is in your search path: the command eb --show-config
will print the variable robot-paths that holds the search path. More options are available - please
have a look at the short help message typing eb -h. For instance, using the search flag -S, you can
check if any EasyBuild configuration file already exists for a given program name:

 eb -S <program_name>

You will be able to load the modules created by EasyBuild in the directory defined by the
EASYBUILD_INSTALLPATH variable using the following commands:

 module use $EASYBUILD_INSTALLPATH/modules/${LUIS_CPU_ARCH}/all
 module load <modulename>/version

The command module use will prepend the selected directory to your MODULEPATH environment
variable, therefore the command module avail will show modules of your software as well.

If you want the software module to be automatically available when opening a new shell in the
cluster, modify your ~/.bashrc file as follows:

 echo 'export EASYBUILD_INSTALLPATH=/your/preferred/installation/dir' >>
~/.bashrc
 echo 'module use $EASYBUILD_INSTALLPATH/modules/${LUIS_CPU_ARCH}/all' >>
~/.bashrc

Note that to preserve the dollar sign in the second line above, the string must be enclosed in single
quotes.

Further Reading

EasyBuild documentation
Easyconfigs repository

Apptainer Containers (replaces Singularity)

Apptainer will replace Singularity on the the LUH-Clusters. Currently you can
use both commands apptainer and singularity because the last one is
a symlink to apptainer. This may change in the future.

Please note: This instruction has been written for Apptainer 1.3.3-*

http://easybuild.readthedocs.io/en/latest/
http://github.com/easybuilders/easybuild-easyconfigs/tree/master/easybuild/easyconfigs

Last
update:
2025/03/24
13:36

guide:modules_and_application_software https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 22:27

Please note: If you would like to fully manage your apptainer container images directly on the cluster,
including build and/or modify actions, please contact us and ask for the permission “apptainer
fakeroot” to be added to your account (because you will need it).

Apptainer containers on the cluster

Apptainer enables users to execute containers on High-Performance Computing (HPC) cluster like
they are native programs or scripts on a host computer. For example, if the cluster system is running
CentOS Linux, but your application runs in Ubuntu, you can create an Ubuntu container image, install
your application into that image, copy the image to an approved location on the cluster and run your
application using Apptainer in its native Ubuntu environment.

The main advantage of Apptainer is that containers are executed as an unprivileged user on the
cluster system and, besides the local storage TMPDIR, they can access the network storage systems
like HOME, BIGWORK and PROJECT, as well as GPUs that the host machine is equipped with.

Additionally, Apptainer properly integrates with the Message Passing Interface (MPI), and utilizes
communication fabrics such as InfiniBand and Intel Omni-Path.

If you want to create a container and set up an environment for your jobs, we recommend that you
start by reading the Apptainer documentation. The basic steps to get started are described below.

Building Apptainer container using a recipe file

If you already have a pre-build container ready for use, you can simply upload the container image to
the cluster and execute it. See the section below about running container images.

Below we will describe how to build a new or modify an existing container directly on the cluster. A
container image can be created from scratch using a recipe file, or fetched from some remote
container repository. In this sub-section, we will illustrate a recipe file method. In the next one, we will
take a glance at remote container repositories.

Using a Apptainer recipe file is the recommended way to create containers if you want to build
reproducible container images. This example recipe file builds a RockyLinux 9 container:

rocky9.def

BootStrap: yum
OSVersion: 9
MirrorURL: https://ftp.uni-
hannover.de/rocky/%{OSVERSION}/BaseOS/$basearch/os
Include: yum

%setup
 echo "This section runs on the host outside the container during
bootstrap"

https://apptainer.org/docs/user/1.3/
https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software?do=export_code&codeblock=41

2025/10/25 22:27 13/17 Modules & Application Software

Cluster Docs - https://docs.cluster.uni-hannover.de/

%post
 echo "This section runs inside the container during bootstrap"

 # install packages in the container
 yum -y groupinstall "Development Tools"
 yum -y install wget vim python3 epel-release
 yum -y install python3-pip

 # install tensorflow
 pip3 install --upgrade tensorflow

 # enable access to BIGWORK and PROJECT storage on the cluster system
 mkdir -p /bigwork /project

%runscript
 echo "This is what happens when you run the container"

 echo "Arguments received: $*"
 exec /usr/bin/python3 "$@"

%test
 echo "This test will be run at the very end of the bootstrapping
process"

 /usr/bin/python3 --version

This recipe file uses the yum bootstrap module to bootstrap the core operation system, RockyLinux 9,
within the container. For other bootstrap modules (e.g.. docker) and details on apptainer recipe files,
refer to the online documentation.

The next step is to build a container image on one of the cluster login servers.

Note: your account must be authorized to use the --fakeroot option. Please contact us at cluster-
help@luis.uni-hannover.de.

Note: Currently, the --fakeroot option is enabled only on the cluster login nodes.

 username@login01$ apptainer build --fakeroot rocky9.sif rocky9.def

This creates an image file named rocky9.sif. By default, apptainer containers are built as read-only
SIF(Apptainer Image Format) image files. Having a container in the form of a file makes it easier to
transfer it to other locations both within the cluster and outside of it. Additionally, a SIF file can be
signed and verified.

Note that a container as the SIF file can be built on any storage of the cluster you have a write access
to. However, it is recommended to build containers either in your $BIGWORK or in some directory
under /tmp (or use the variable $MY_APPTAINER) on the login nodes.

Note: Containers located only under the paths $BIGWORK, $SOFTWARE and /tmp are allowed to be
executed using shell, run or exec commands, see the section below,

https://apptainer.org/docs/user/1.3/definition_files.html
mailto:cluster-help@luis.uni-hannover.de
mailto:cluster-help@luis.uni-hannover.de

Last
update:
2025/03/24
13:36

guide:modules_and_application_software https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 22:27

The latest version of the apptainer command can be used directly on any cluster node without prior
activation.

Downloading containers from external repositories

Another easy way to obtain and use a Apptainer container is to retrieve pre-build images directly from
external repositories. Popular repositories are Docker Hub or Apptainer Library. You can go there and
search if they have a container that meets your needs. For docker images, use the search form at
Docker Hub instead.

In the following example we will pull the latest python container from Docker Hub and save it in a file
named python_latest.sif:

 username@login01$ apptainer pull docker://python:latest

The build sub-command can also be used to download images, where you can additionally specify
your preferred container file name:

 username@login01$ apptainer build my-ubuntu22.04.sif
library://library/default/ubuntu:22.04

How to modify existing Apptainer images

First you should check if you really need to modify the container image. For example, if you are using
Python in an image and simply need to add new packages via pip you can do that without modifying
the image by running pip in the container with the --user option.

To modify an existing SIF container file, you need to first convert it to a writable sandbox format.

Please note: Since the --fakeroot option of the shell and build sub-commands does not work
with container sandbox when the container is located on a shared storage such as BIGWORK,
PROJECT or HOME, the container sandbox must be stored locally on the login nodes. We recommend
using the /tmp directory (or variable $MY_APPTAINER) which has sufficient capacity.

 username@login01$ cd $MY_APPTAINER
 username@login01$ apptainer build --sandbox rocky9-sandbox rocky9.sif

The build command above creates a sandbox directory called rocky9-sandbox which you can then
shell into in writable mode and modify the container as desired:

 username@login01$ apptainer shell --writable --fakeroot rocky9-sandbox
 Apptainer> yum install -qy python3-matplotlib

After making all desired changes, you exit the container and convert the sandbox back to the SIF file
using:

https://hub.docker.com/explore
https://cloud.sylabs.io/library
https://hub.docker.com/
https://hub.docker.com/

2025/10/25 22:27 15/17 Modules & Application Software

Cluster Docs - https://docs.cluster.uni-hannover.de/

 Apptainer> exit
 username@login01$ apptainer build -F --fakeroot rocky9.sif rocky9-sandbox

Note: you can try to remove the sandbox directory rocky9-sandbox afterward but there might be a
few files you can not delete due to the namespace mappings that happens. The daily /tmp cleaner
job will eventually clean it up.

Running container images

Please note: In order to run a Apptainer container, the container SIF file or sandbox directory must be
located either in your $BIGWORK, in your group's $SOFTWARE or in the /tmp directory.

There are four ways to run a container under Apptainer.

If you simple call the container image as an executable or use the Apptainer run sub-command it will
carry out instructions in the %runscript section of the container recipe file:

How to call the container SIF file:

 username@login01:~$./rocky9.sif --version
This is what happens when you run the container
Arguments received: --version
Python 3.8.6

Use the run sub-command:

 username@login01:~$ apptainer run rocky9.sif --version
This is what happens when you run the container
Arguments received: --version
Python 3.8.6

The Apptainer exec sub-command lets you execute an arbitrary command within your container
instead of just the %runscript. For example, to get the content of file /etc/os-release inside the
container:

 username@login01:~$ apptainer exec rocky9.sif cat /etc/os-release
NAME="Rocky Linux"
VERSION="8.4 (Green Obsidian)"
....

The Apptainer shell sub-command invokes an interactive shell within a container. Note the
Apptainer> prompt within the shell in the example below:

 username@login01:$ apptainer shell rocky9.sif
Apptainer>

Note that all three sub-commands shell, exec and run let you execute a container directly from
remote repository without first downloading it on the cluster. For example, to run an one-liner “Hello
World” ruby program:

Last
update:
2025/03/24
13:36

guide:modules_and_application_software https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software

https://docs.cluster.uni-hannover.de/ Printed on 2025/10/25 22:27

 username@login01:$ apptainer exec library://sylabs/examples/ruby ruby -e
'puts "Hello World!"'
Hello World!

Please note: You can access (read & write mode) your HOME, BIGWORK and PROJECT (only login
nodes) storage from inside your container. In addition, the /tmp (or TMPDIR on compute nodes)
directory of a host machine is automatically mounted in a container. Additional mounts can be
specified using the --bind option of the exec, run and shell sub-commands, see apptainer run
--help.

Apptainer & parallel MPI applications

In order to containerize your parallel MPI application and run it properly on the cluster system you
have to provide MPI library stack inside your container. In addition, the userspace driver for Mellanox
InfiniBand HCAs should be installed in the container to utilize cluster InfiniBand fabric as a MPI
transport layer.

This example Apptainer recipe file ubuntu-openmpi.def retrieves an Ubuntu container from
Docker Hub, and installs required MPI and InfiniBand packages:

Ubuntu 20.04
ubuntu-openmpi.def

BootStrap: docker
From: ubuntu:focal

%post
install openmpi & infiniband
apt-get update
apt-get -y install openmpi-bin openmpi-common libibverbs1 libmlx4-1

enable access to BIGWORK storage on the cluster
mkdir -p /bigwork /project

enable access to /scratch dir. required by mpi jobs
mkdir -p /scratch

Ubuntu 22.x - 24.x
ubuntu-openmpi.def

BootStrap: docker

https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software?do=export_code&codeblock=53
https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software?do=export_code&codeblock=54

2025/10/25 22:27 17/17 Modules & Application Software

Cluster Docs - https://docs.cluster.uni-hannover.de/

From: ubuntu:latest

%post
install openmpi & infiniband
apt-get update
apt-get -y install openmpi-bin openmpi-common ibverbs-providers

enable access to BIGWORK storage on the cluster
mkdir -p /bigwork /project

enable access to /scratch dir. required by mpi jobs
mkdir -p /scratch

Once you have built the image file ubuntu-openmpi.sif as explained in the previous sections, your
MPI application can be run as follows (assuming you have already reserved a number of cluster
compute nodes):

module load GCC/10.2.0 OpenMPI/4.0.5
mpirun apptainer exec ubuntu-openmpi.sif /path/to/your/parallel-mpi-app

The above lines can be entered at the command line of an interactive session, or can also be inserted
into a batch job script.

Further Reading

Apptainer home page
Apptainer Library
Docker Hub

1)

https://lmod.readthedocs.io/en/latest/010_user.html
2)

https://easybuild.readthedocs.io/en/latest/

From:
https://docs.cluster.uni-hannover.de/ - Cluster Docs

Permanent link:
https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software

Last update: 2025/03/24 13:36

https://apptainer.org/
https://cloud.sylabs.io/library
http://hub.docker.com/explore
https://lmod.readthedocs.io/en/latest/010_user.html
https://easybuild.readthedocs.io/en/latest/
https://docs.cluster.uni-hannover.de/
https://docs.cluster.uni-hannover.de/doku.php/guide/modules_and_application_software

	Modules & Application Software
	Working with modules
	Exercise: Working with modules

	List of available software
	Usage instructions

	Build software from source code
	EasyBuild
	EasyBuild framework
	How to build your software
	Further Reading

	Apptainer Containers (replaces Singularity)
	Apptainer containers on the cluster
	Building Apptainer container using a recipe file
	Downloading containers from external repositories
	How to modify existing Apptainer images
	Running container images
	Apptainer & parallel MPI applications
	Further Reading

